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1 Introduction

Stock prices have been well researched over the years. Many empirical regularities have been
documented in the literature; for example, stock prices jump, stock return distributions are
heavy-tailed, stock returns display stochastic volatilities. Some controversies also exist; for
example, are stock prices predictable? The literature goes back to 1960s with papers such as
Mandelbrot (1963) and Fama (1965). Of late, studies of stock prices have been conducted
jointly with stock option data. Examples abound. Bakshi, Cao and Chen (1997), Bates
(2000), Chernov and Ghysel (2000), Duffie, Pan and Singleton (2000), Andersen, Benzoni
and Lund (2002), Pan (2002), Eraker (2004), Broadie, Chernov and Johannes (2007), Ait-
Sahalia and Kimmel (2007) and Duan and Yeh (2010) are some examples that rely on the
continuous-time approach. Along the line of the discrete-time GARCH approach, there have
been Hsieh and Ritchken (2005), Stentoft (2005), Christoffersen, et al (2006, 2008), among
others.

The continuous-time stochastic volatility/jump model is very popular and offers a pow-
erful way of handling stock prices and options together. Its application has, however, been
hindered by the fact that stochastic volatilities, as opposed to prices, cannot be directly
observed. Empirical implementations, particularly jointly with option data, were often con-
ducted with some ad hoc assumptions designed to bypass the challenge posed by latent
volatility. Properly estimating a stochastic volatility/jump model, with or without using
option data, naturally lands in the domain of non-linear, non-Gaussian filtering problems.
When option data are involved, the implementation challenges increase many folds, and de-
veloping more powerful empirical methodologies will no doubt make this line of models more
accessible.

One estimation strategy put forward by Duan and Yeh (2010) actually views the presence
of option data as an advantage. Instead of dealing with individual options that will compli-
cate the estimation task, they opted to formulate an estimation strategy that uses the value
of a particular option portfolio known as VIX, which is a widely followed volatility index
produced by the Chicago Board Options Exchange (CBOE) for the S&P 500 index return.
Duan and Yeh (2010) devised a transformed-data maximum likelihood estimation method
for a class of stochastic volatility models with or without jumps, and their estimation used
the time series of the S&P 500 and VIX index values jointly. In essence, the latent stochastic
volatility can be directly linked to the VIX index value, and thus makes the implementa-
tion of the stochastic volatility/jump model actually simpler. Their estimation approach
stands in sharp contrast to other methods of estimation that require repeated valuations of
individual option contracts.

The VIX index has been widely used to study volatility specifications. Jones (2003),
for example, employed the old VIX index, currently known as VXO, to conduct an analysis
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of a joint return and volatility specification. Dotsis, Psychoyios and Skiadopoulos (2007)
and Chourdakis and Dotsis (2009) performed empirical studies using VIX and other similar
indices to examine various volatility specifications. Todorov (2009) and Todorov and Tauchen
(2010) used VIX to explore the dynamic properties implied by the volatility process and
variance risk premium. Ishida, McAleer and Oya (2011) recommended an empirical approach
of using VIX to improve the estimation of the leverage parameter which is the correlation
between the diffusive terms of the price and volatility processes.

The empirical findings of Pan (2002), Jones (2003), Chourdakis and Dotsis (2009) and
Duan and Yeh (2010), among others share a common peculiar feature. The estimated volatil-
ity risk premium is quite big, which in turn makes the stochastic volatility process under
the risk-neutral measure explosive even though it mean-reverts under the physical measure.1

This result is clearly counterintuitive, because if it were true, longer-dated options would
have to have unchecked Black-Scholes implied volatilities. A similar point was also made in
Pan (2002). It is also counterfactual if we take into account the empirical findings reported in
many nonparametric option pricing studies. The general conclusion in that literature is that
the volatility of the risk-neutral return distribution implied by options of the same maturity
may rise or decline with the maturity of the options initially when the maturity is relatively
short, but they tend to level off as the maturity becomes reasonably long. Most studies
also concluded that the levelling-off speed is slower for the risk-neutral return distribution
vis-a-vis the physical return distribution, but it is not explosive nevertheless.

Our conjecture is: when the VIX term structure is employed in a joint estimation of
the stochastic volatity/jump model, the risk-neutral stochastic volatility process will be
conclusively mean-reverting. The empirical findings of this paper are indeed consistent with
this conjecture. The risk-neutral volatility dynamic is found to be mean-reverting under all
specifications. The estimates for the most general stochastic volatility model without jumps
imply that the risk-neutral stationary volatility stands at 21.8%, which is 70% higher than
the stationary volatility of 12.8% under the physical probability.

The contribution of this paper in part rests on a methodological generalization of Duan
and Yeh (2010) to allow for measurement errors in the observed VIX, and is hence able
to simultaneously incorporate several VIXs corresponding to different maturities. Allowing
measurement errors in VIX is natural, because the literature has pointed out that CBOE’s
VIX may exhibit significant measurement errors due to its calculation procedure. For ex-
ample, Jiang and Tian (2007) argued that CBOE’s procedure for VIX tends to over-smooth

1When the volatility process is not mean-reverting, the stationary mean of the volatility process (equiva-
lently, the stationary variance of the price process) will not exist. But the volatility process can still possess
diffusion-term dictated strict stationarity. Readers are referred to Conley, et al (1997) for the reason.
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the model-free implied variance, and thus induces bias in the VIX index. Biases caused by
the VIX calculation are also associated with the truncation and discretization errors.2

When measurement errors in VIX are considered, the transformed-data MLE method
of Duan and Yeh (2010) is no longer applicable. The one-to-one relationship between VIX
and the latent stochastic volatility is severed by the measurement error, because VIX is
simultaneously influenced by both the latent stochastic volatility and the measurement error.
With measurement errors, one is forced to confront the difficult task of devising a workable
nonlinear, non-Gaussian filter for the estimation problem. For this, we follow Duan and
Fulop (2009) to design a smoothed localized particle filter, and through which derive the
likelihood function for estimation.

We implement the particle filter-based MLE method on the data set that comprises the
S&P 500 index value and the VIX term structure at 1-, 3- and 6-month maturities. The
data sample is daily from January 2, 1992 to March 31, 2009, spanning 17 years. Our
empirical findings are: (1) the volatility process under the risk-neutral measure is mean-
reverting; (2) the jump intensity is time-varying; (3) the jump and volatility risks are priced;
(4) the measurement errors in VIXs are material; and (5) the square-root volatility process
is mis-specified with or without price jumps.

A Monte Carlo study is conducted to ascertain the performance of our estimation method.
We simulate asset price and latent stochastic volatility using a stochastic volatility model
with jumps based on some reasonable parameter values obtained from the empirical study.
Corresponding to the simulated latent stochastic volatility, we compute the theoretical VIX
term structure and add on some measurement errors. To mimic real-life applications, the
simulated prices and VIX term structure series are processed by our estimation method
while acting as if we did not know the latent volatility values. The results suggest that the
proposed estimation method works well.

The balance of this paper is organized as follows. In section 2, we introduce, under
the physical probability measure, a constant-elasticity-of-variance stochastic volatility model
that allows price jumps. The corresponding system under the risk-neutral pricing measure
and the critical relationship linking the latent volatility to VIX are also presented in this
section. In section 3, the likelihood function derived from applying the smoothed localized
particle filter is provided. The empirical results are reported and discussed in Section 4. The
Monte Carlo study is given in Section 5, and the concluding remarks follow in Section 6.

2Truncation errors result from ignoring strike prices beyond the range of listed strike prices, whereas
discretization errors are due to the discreteness of the listed strike prices and the numerical approximation
to the integral used in the VIX calculation.
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2 The theoretical model

2.1 Stochastic volatility with jumps

We generalize the model studied in Duan and Yeh (2010) which considers a class of stochastic
volatility models with price jumps. The specification encompasses many option pricing
models in the literature with a volatility dynamic that is mean-reverting and has a constant
elasticity of variance. The generalized model has a direct interpretation and allows for the
jump intensity to be time-varying. The dynamics under the physical measure P is assumed
to be

dSt
St−

= (r − q + δ0 + δ1Vt) dt+
√
VtdWt

+
(
eJt − 1

)
dNt − (λ0 + λ1Vt)

(
eµJ+

σ2J
2 − 1

)
dt (1)

dVt = κ(θ − Vt)dt+ vV γ
t dBt (2)

where St− denotes the left time limit of St; Wt and Bt are two correlated Wiener processes
with the correlation coefficient equal to ρ; Nt is a Poisson process with time-varying intensity
λ0 + λ1Vt, and is independent of Wt and Bt; Jt is an independent normal random variable
with mean µJ and standard deviation σJ . Since

√
VtdWt and JtdNt have their respective

variances equal to Vtdt and (λ0 + λ1Vt)(µ
2
J + σ2

J)dt, Vt + (λ0 + λ1Vt)(µ
2
J + σ2

J) becomes the
variance rate of the asset price process. The price and volatility processes are dependent
through two correlated Wiener processes – Wt and Bt. In the above equation, r and q denote
the risk-free rate and the dividend yield, respectively. The last term in equation (1) is to
compensate the growth of the jump component so that the net associated with jump is a
martingale difference. The term δ0+δ1Vt is the combined risk premium to compensate for the
diffusion and jump risks. Equation (1) can be restated via Ito’s lemma in a more convenient
form:

d lnSt =

[
r − q + δ0 + δ1Vt −

Vt
2
− (λ0 + λ1Vt)

(
eµJ+

σ2J
2 − 1

)]
dt+

√
VtdWt + JtdNt (3)

The specification in equations (2) and (3) nests several well-known stochastic volatility
models with or without jumps. For example, if there are no jumps (i.e., λ0 = λ1 = 0), then
the Hull and White (1987) stochastic models follows by further setting γ = 1 and θ = 0.
Similarly, the Heston (1993) model emerges by setting γ = 0.5. If jumps are allowed, the
price innovation becomes that of Bates (2000) and Pan (2002). Note that one can set λ0 =
or λ1 = 0 to specialize the nature of jump intensity. The joint price-volatility model in
equations (2) and (3) is more general than that of Bates (2000) and Pan (2002) because
their specification corresponds to the special case of γ = 0.5, i.e, a square-root volatility
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process. To reduce to the specification of Duan and Yeh (2010), one needs to set δ0 = 0 and
λ1 = 0.

For the risk-neutral valuation dynamics, we follow Duan and Yeh (2010) which continued
the long line of literature in dealing with incompleteness arising from stochastic volatility
and/or jumps. For example, Bates (2000) and Pan (2002) restricted their attention to the
equivalent martingale measures under which the jump dynamic remains in the same form
but the jump intensity and the mean of the jump size are allowed to differ from those under
the physical measure, i.e., shifting from λ0 to λ∗0, from λ1 to λ∗1 and from µJ to µ∗J .3 The
system corresponding to equations (2) and (3) under the risk-neutral probability measure Q
becomes

d lnSt =

[
r − q − Vt

2
− (λ∗0 + λ∗1Vt)

(
eµ

∗
J+

σ2J
2 − 1

)]
dt+

√
VtdW

∗
t + J∗t dN

∗
t (4)

dVt = (κθ − κ∗Vt) dt+ vV γ
t dB

∗
t (5)

where κ∗ = κ + δV and B∗t = Bt + δV
v

∫ t
0
V 1−γ
s ds with δV being interpreted as the volatility

risk premium. W ∗
t and B∗t are two correlated Wiener processes under measure Q and their

correlation coefficient remains to be ρ; N∗t is a Poisson process with intensity λ∗0 + λ∗1Vt and
is independent of W ∗

t and B∗t ; J
∗
t is an independent normal random variable under measure

Q with a new mean µ∗J but its standard deviation remains unchanged at σJ . It is fairly easy

to verify by Ito’s lemma that equation (4) leads to EQ
t

(
dSt
St

)
= (r−q)dt so that the expected

return under measure Q is indeed the risk-free rate minus the dividend yield.

Note that Vt + (λ∗0 + λ∗1Vt)(µ
∗2
J + σ2

J) becomes the variance rate of the asset price process
under measure Q, which is expected to be different from Vt+(λ0+λ1Vt)(µ

2
J+σ2

J) when jumps
are allowed. An interesting consequence of introducing jumps is that the local volatility of
the asset return is no longer invariant to the change from measure P to Q. The difference
can be caused by either a change in the jump intensity or the mean of the jump size.

2.2 Linking asset volatility to VIX

Consider an option portfolio of European calls and puts weighted inversely proportional to
the square of their strike prices. The portfolio value at time t with its component options
expiring at time t+ τ can be expressed by:

Πt(K0, t+ τ) ≡
∫ K0

0

Pt(K; t+ τ)

K2
dK +

∫ ∞
K0

Ct(K; t+ τ)

K2
dK, (6)

3We refer readers to Appendix A of Pan (2002) for details.
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where 0 < K0 < ∞. Pt and Ct are the put and call prices at time t, respectively; and K is
the strike price of an option.

The CBOE VIX index is based on the value of such an option portfolio, and uses the
following definition:

VIX2
t (τ) ≡ 2

τ
erτΠt(Ft(t+ τ), t+ τ). (7)

where Ft(t+ τ) denotes the forward price at time t with the maturity time at t+ τ .

Following the Duan and Yeh (2010) approach and applying it to the generalized model,
VIX can be linked to the latent stochastic volatility in equations (1)-(2) with the following
new relationship:

VIX2
t (τ) = 2φ∗0 +

1 + 2φ∗1
τ

∫ t+τ

t

EQ
t (Vs)ds

= 2φ∗0 +
(1 + 2φ∗1)κθ

κ∗

(
1− 1− e−κ∗τ

κ∗τ

)
+

(1 + 2φ∗1)
(
1− e−κ∗τ

)
κ∗τ

Vt (8)

where φ∗0 = λ∗0

(
eµ

∗
J+σ

2
J/2 − 1− µ∗J

)
and φ∗1 = λ∗1

(
eµ

∗
J+σ

2
J/2 − 1− µ∗J

)
. If there are no jumps,

then VIX2
t (τ) obviously equals the standardized risk-neutral expected cumulative variance

or the risk-neutral expected realized variance over the horizon τ , which is a well-known
result and serves as the theoretical basis for the VIX index; for example, Britten-Jones and
Neuberger (2000), Demeterfi, Derman, Kamal and Zhou (1999) and Jiang and Tian (2005).

When there are jumps, VIX2
t (τ) becomes a jump-adjusted risk-neutral expected cumula-

tive variance over the horizon τ . If the jump intensity is constant, then the result reduces
to that of Duan and Yeh (2010) where φ∗1 = 0. The general result can also be reduced to
the standard risk-neutral expected cumulative variance or the risk-neutral expected realized
variance when both µ∗J and σJ are small enough to justify a second-order Taylor expansion
of the term eµ

∗
J+σ

2
J/2 appearing in φ∗0 and φ∗1. When the jump size is small, the statement

that the VIX index approximately equals the risk-neutral expected realized variance was
first made in Jiang and Tian (2005). Note that the relationship between the VIX index
and the risk-neutral expected realized variance is quite generic, but VIX’s link to the latent
stochastic volatility such as equation (8) is model-specific, with or without price jumps.

Similar to Pan (2002) and Duan and Yeh (2010), λ∗0 and µ∗J (or λ∗1 and µ∗J) cannot be
separately identified. Pan (2002) simply assumed λ∗1 = λ1. Equally acceptable is to assume
µ∗J = µJ . Instead of forcing an equality on a specific pair of parameters, we follow Duan
and Yeh (2010) to rely on the composite parameters φ∗0 and φ∗1 to define the jump risk
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premium as δJ0 = φ∗0 − φ0 and δJ1 = φ∗1 − φ1, where φ0 = λ0

(
eµJ+σ

2
J/2 − 1− µJ

)
and

φ1 = λ1

(
eµJ+σ

2
J/2 − 1− µJ

)
. The jump risk premium is meant to reflect the compensation

term in the expected return for the jump risk. If the jump risk is priced, the compensation
term will change by a time-varying amount equal to δJ0+δJ1Vt, which is induced by changing
from the physical probability measure P to the risk-neutral pricing measure Q.

3 Econometric formulation

3.1 A nonlinear, non-Gaussian filtering problem

The CBOE’s VIX index uses traded options that meet certain selection criteria. Naturally,
the actual VIX deviates from its theoretical counterpart due to the use of an incomplete
set of options. The measurement errors come in through three obvious channels: truncation
due to the available strike price range, discretization due to the minimum tick size in strike
price, and bid-ask price averaging.

If the measurement error in VIX is negligible, Duan and Yeh (2010) argued that equation
(8) gives rise to an econometric specification with which the volatility and jump risk premi-
ums and other model parameters can be estimated using VIX, which in principle summarizes
critical information about option prices. These parameter estimates can then be used to as-
sess the performance of an option pricing model on individual options with different strike
prices and maturities. However, using just one VIX as in Duan and Yeh (2010) amounts
to only dealing with the information summarized from options of a particular maturity. In
order to utilize the information embedded in options of different maturities, we must intro-
duce measurement errors so that the econometric system is legitimately specified. Coupling
with the likely scenario that the VIX term structure contains material measurement errors,
it is natural to incorporate them in the econometric specification.

Consider a time series sample consisting of N observations, and denote the data point at
time ti by Yti = (lnSti ,VIXti(τ1), . . . ,VIXti(τL)), where L is the number of entries available
on the VIX term structure and τ1, . . . , τL correspond to their maturities. The information
set up to time ti is denoted by Di = {Yt0 , . . . , Yti}. Denote the model parameters by
Θ = (κ, θ, λ, µJ , σJ , ρ, γ, δ0, δ1, κ

∗, φ∗0, φ
∗
1). A state-space representation for our model can

7



be stated below:

ln

(
Sti+1

Sti

)
=

[
r − q + δ0 + δ1Vti −

Vti
2
− (λ0 + λ1Vti)(e

µJ+σ
2
J/2 − 1)

]
hi+1

+
√
Vtihi+1εi+1 +

Nti+1−Nti∑
k=1

Jk,i+1 (9)

ln
(

VIXti+1
(τ1)
)

=
1

2
ln
[
A(τ1; Θ) +B(τ1; Θ)Vti+1

]
+ σν1ν1,i+1 (10)

...

ln
(

VIXti+1
(τL)

)
=

1

2
ln
[
A(τL; Θ) +B(τL; Θ)Vti+1

]
+ σνLνL,i+1 (11)

where hi+1 = ti+1 − ti; εi+1 is a standard normal random variable and is independent of
Jk,i+1, Nti+1

and νj,i+1 for all j and k; Jk,i+1’s are independent normal random variables
for the jump size with a common mean µJ and variance σ2

J for k = 0, 1, 2, · · · and i =
0, 1, 2, · · · , N − 1; Nti+1

− Nti is an independent Poisson random variable with intensity
(λ0 + λ1Vti)hi+1; νj,i+1’s are the i.i.d. standard normal random variables for j = 1, 2, · · · , L;
and σν1 , · · · , σνL (denoted by Σ) are parameters corresponding to the measurement errors.

A(τ ; Θ) and B(τ ; Θ) are 2φ∗0 +
κθ(1+2φ∗1)

κ∗

(
1− 1−e−κ∗τ

κ∗τ

)
and

(1−e−κ
∗τ)(1+2φ∗1)

κ∗τ
, respectively. The

latent stochastic volatility process is regarded as the transition equation for the state-space
model:

Vti+1
= Vti + κ(θ − Vti)hi+1 + vV γ

ti

√
hi+1ηi+1, (12)

where ηi+1 is a standard normal random variable correlated with εi+1 and the correlation
coefficient equals ρ; ηi+1 is independent of Jk,i+1, Nti+1

and νj,i+1 for all k and j. The above
representation is based on the Euler approximation. If hi+1 is small such as daily data, the
approximation error is negligible.4

3.2 Estimation by a smoothed localized particle filter

Equations (9)-(12) constitute a nonlinear, non-Gaussian state-space model, and thus the
standard Kalman filter cannot be reliably applied. For the filtering solution, we resort to
particle filtering, which is a sequential Monte Carlo technique using simulated samples to
represent prediction and filtering distributions. Updating from the prediction distribution to
the filtering distribution is carried out by applying the Bayes rule. The resulting importance
weights are likely to propagate poorly unless resampling is performed to stabilize weight
distribution as the system advances. Particle filtering always involves sampling/importance

4We have performed a simulation study to ascertain that using the Euler approximation of our continuous-
time model with daily data does not materially affect the estimation and inference results.
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resampling (SIR). However, using the standard SIR can sometimes be quite inefficient be-
cause of drawing points of low importance weights. Moreover, the resampling step creates
discontinuity in the likelihood function that is not conducive to numerical optimization and
statistical inference. The two concerns lead us to adopt the smoothed localized SIR (SL-SIR)
scheme proposed by Duan and Fulop (2009) to compute the likelihood function and conduct
the maximum likelihood analysis.

To evaluate the likelihood function for the state-space model, we utilize the stepping-
back idea used in Duan and Fulop (2009). It can circumvent the spiking problem when the
measurement error is small. Specifically, the likelihood function can be obtained using the
following joint density function:

f(YtN , YtN−1
, . . . , Yt1) =

N−1∏
i=0

f(Yti+1
|Di).

In the above equation, the conditional density f(Yti+1
|Di) can be decomposed into the density

of Yti+1
conditional on the stepping-back values of Vti and Sti , i.e, f(Yti+1

|Vti , Sti) and the
filtering density of Vti , i.e., f(Vti |Di); that is,

f(Yti+1
|Di) =

∫ ∞
0

f(Yti+1
|Vti , Sti)f(Vti |Di)dVti , (13)

Note that Sti is part of Di, and Sti and Vti together are sufficient to characterize the distri-
bution of Yti+1

.

As shown in Duan and Fulop (2009), one can further decompose f(Yti+1
|Vti , Sti) using

the conditional density of the transformed data to set the stage for localized sampling later.
Without loss of generality, VIXti+1

(τ1) is chosen for inversion to obtain the latent volatility
Vti+1

.

f(Yti+1
|Vti , Sti)

=

∫ ∞
−∞

f(lnSti+1
,VIXti+1

(τ1), . . . ,VIXti+1
(τL)|Vti , Sti , ν1,i+1)f(ν1,i+1)dν1,i+1 (14)

=

∫ ∞
−∞

f(lnSti+1
, V ∗ti+1

(τ1, ν1,i+1)|Vti , Sti)
B(τ1; Θ)e2σν1ν1,i+1

L∏
k=2

f(VIXti+1
(τk)|V ∗ti+1

(τ1, ν1,i+1))f(ν1,i+1)dν1,i+1

where V ∗ti+1
(τ1, ν1,i+1) is the implied latent volatility given ν1,i+1 and VIXti+1

(τ1) computed

according to equation (10); f(ν1,i+1) is the density of ν1,i+1; and
(
B(τ1; Θ)e2σν1ν1,i+1

)−1
is the

Jacobian term for the transformation based on equation (10). The second equality is due to
the fact that once the measurement error is known, the VIX value implies a specific value
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for the latent stochastic volatility. This construction uses the principle of transformed data
as in Duan (1994).

By equations (13) and (14), we can have

f(Yti+1
|Di) = E

[
f(lnSti+1

, V ∗ti+1
(τ1, ν1,i+1)|Vti , Sti)

B(τ1; Θ)e2σν1ν1,i+1

L∏
k=2

f(VIXti+1
(τ1)|V ∗ti+1

)

∣∣∣∣∣Di

]
(15)

The expression in (15) is a crucial representation for the maximum likelihood estimation
using a particle filter. This conditional expectation expression for f(Yti+1

|Di) can be evalu-
ated along with the computing of the filtering distribution. By this expression, the general
approach can also be reduced to the special case of Duan and Yeh (2010) for which L = 1
and σν1 = 0.

We adopt the SL-SIR approach of Duan and Fulop (2009) to design a specific particle
filter for computing f(Yti+1

|Di). The sampler is considered localized because one directly
samples the measurement error, which amounts to sampling the latent stochastic volatility
around the observed VIX.

The procedure of the SL-SIR scheme is given below, and the specific results for the key
components are provided in Appendix.

• Step I: LetM be the number of particles. Generate a pair of
{(
V

(m)
ti+1

, V
(m)
ti

)
|m ∈ {1, . . . ,M}

}
using a localized sampler g

(
V

(m)
ti+1

, V
(m)
ti |Di

)
which is constructed to take advantage of

the information contained in VIXti+1
(τ1). That is, given V

(m)
ti and VIXti+1

(τ1), we draw

an independent standard normal random variable ν
(m)
1,i+1. Given the simulated ν

(m)
1,i+1,

the latent volatility V
(m)
ti+1 is obtained by inverting VIXti+1

(τ1) according to equation
(10).

• Step II: Compute the importance weights based on
(
V

(m)
ti+1

, V
(m)
ti

)

w
(m)
i+1 =

f
(

lnSti+1
, V

(m)
ti+1
|V (m)
ti , Sti

)
B(τ1; Θ)e2σν1ν1,i+1

L∏
k=2

f
(

VIXti+1
(τk)|V (m)

ti+1

)
(16)

and then re-normalize these weights by π
(m)
i+1 =

w
(m)
i+1∑M

m=1 w
(m)
i+1

for each simulated point V
(m)
ti+1

.

• Step III: Resample from a smoothed empirical distribution implied by the set of{(
V

(m)
ti+1

, π
(m)
ti+1

)
|m ∈ {1, . . . ,M}

}
to obtain the equally weighted sample of V

(m)
i+1 with

size M .
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Simulating ν1,i+1 avoids the dependency in simulating Vti+1
. When the measurement

error in small in magnitude, it is particularly efficient. Equation (16) not only provides the
importance weight for each simulated Vti+1

, but also offer a direct way to approximate the
likelihood function by averaging the weights corresponding to the M particles.

f(Yti+1
|Di) =

1

M

M∑
m=1

w
(m)
i+1 (17)

4 Empirical analysis

4.1 Data description

The data set used in this study comprises the S&P 500 index values, the risk-free rates,
and CBOE’s VIX term structure data, daily from January 2, 1992 to March 31, 2009. The
proxy for the risk-free rate is the continuously compounded one-month LIBOR rate. The
CBOE introduced the volatility index, VIX, in 1993 and overhualed the VIX methodology
in 2003. CBOE’s VIX index measures the market’s anticipation of the forward S&P 500
index volatility conveyed by the S&P 500 index option prices at the time. Specifically, the
VIX index is the value of a unique portfolio of the S&P 500 index options (out-of-the money
calls and puts) for a target maturity, say 30 days. The commonly referred VIX is the one
corresponding to the maturity of 30 calendar days. Due to increased volatility-based trading
activities, the CBOE further constructed the volatility term structure series for several times-
to-maturity defined by the expiration dates of the S&P 500 index option contracts in the
portfolios. The VIX term structure employs the same construction methodology as for the
standard VIX. The entries in the VIX term structure are the three near-term months plus
at least three additional contracts expiring in the March quarterly cycle. Thus, the CBOE
provides at least six VIX term structure data points corresponding to different maturities.
It is important to note that the maturities in CBOE’s VIX term structure series are on the
business-day basis, in contrast to the standard VIX which is of 30 calendar days. In this
study, we use the VIX term structure instead of the standard VIX.

All data points on the VIX term structure run a normal maturity cycle. For ease of
analysis, we linearly interpolate the points on the term structure in order to fix at some
constant maturities of interest. For interpolation, we follow the strategy adopted in the
standard VIX of the 30-day maturity which linearly interpolate the squared VIXs of the two
adjacent maturities. Our target maturities are three: 1, 3 and 6 months. They translate
into 21, 63 and 126 business days, respectively. The VIXs for these maturities are obtained
by linearly interpolating the data on the term structure whose expiration dates can bracket
21, 63 and 126 business days, respectively.
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Table 1 reports some summary statistics for the S&P 500 index return and the VIX term
structure series with 1-, 3-, and 6-month maturities. The VIX term structure values are
stated in percentage points per annum. The index return is clearly negatively skewed and
heavy-tailed. The mean values of the VIX term structure reveal that the forward 1-, 3-, and
6-month (annualized) volatilities for the S&P 500 index return are approximately 19%, 19.5%
and 19.9%, reflecting in general an upward sloping term structure. The longer-maturity VIX
tends to be less volatile than the shorter-maturity VIX, and the 6-month (1-month) VIX
has the smallest (largest) standard deviation, supporting our conjecture that the risk-neutral
volatility dynamic should be mean-reverting. Volatility should be naturally skewed in the
positive direction, which is indeed the feature of the VIX term structure series. The VIX
term structure values also show heavy tails. The phenomenon of stochastic volatilities is
also fairly clear with the shorter-maturity (longer-maturity) volatility ranging from 9.2% to
80.9% (11.7% to 62.5%) over the sample period.

Figure 1 plots the time series of the S&P 500 index return and the VIX term structure
with 1-, 3-, and 6-month maturities. Several observations are in order. With the exception of
the Gulf War period, the market was not too volatile in the 90’s, and it only became jittery
towards the end of 90’s. Then, the Dot-Com Bubble burst, causing the market volatility to
rise until the market recovery in 2003. Since then, the market volatility has been in a steady
decline until reaching the middle of 2006. The market volatility rapidly increased afterward
and reached the peak during the 2008 financial crisis. Afterwards, the market volatility fell
sharply again. Comparing the three VIX series highlights an interesting and understandable
fact; that is, a downward sloping volatility term structure is associated with market turmoil.

Figure 2 plots in different panels the time series of the VIX term structure for 1-, 3-, and
6-month maturities along with the S&P 500 index return’s realized volatilities calculated
from the subsequent trading days that are consistent with the maturities of the VIX term
structure. Added to the graph is the gap between VIX and realized volatility. There are
several noticeable features. With the exception of the periods when the VIX value has
spiked, VIX tends to be higher than realized volatility. It suggests that shorting VIX will
be profitable in normal times, but will suffer a loss when the market crashes. Since VIX is
meant to be the risk-neutral expected realized volatility, it also implies that the volatility
dynamic under the risk-neutral pricing measure must be different from the one under the
physical probability measure. Particularly, it shows that the risk-neutral volatility tends to
hover around a higher level, and by implication the volatility risk will mostly be priced by
the market.

4.2 Empirical findings

Table 2 summarizes the particle filter-based maximum likelihood estimation and inference
results for three versions of the stochastic volatility model, where CEV denotes the stochastic
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volatility model with an unconstrained CEV parameter γ, HW is the Hull and White (1987)
stochastic volatility model with γ = 1 but allows for a non-zero θ, and SQRT corresponds to
the stochastic volatility model with γ = 0.5 such as Heston (1993). The number of particles
used in the empirical studies is 200. The parameter estimates along with their corresponding
standard errors (inside the parentheses) are reported in this table. LR denotes the likelihood
ratio test statistic with its corresponding p value given inside the parentheses.

When the CEV parameter γ is unconstrained (CEV), the estimate of γ is 0.987 for
the entire data sample. By the likelihood ratio test, the square-root volatility specification
(γ = 0.5) is resoundingly rejected. The test result shows that the popular square-root
specification for the volatility dynamic is seriously at odds with the data. In comparison
to the results reported in the literature, we note that Jones (2003) has estimates from
0.84 to 1.5, Ait-Sahalia and Kimmel (2007) have an estimate around 0.65, and Bakshi,
Ju and Ou-yang (2006) and Chourdakis and Dotsis (2009) have estimates from 1.2 to 1.5.
The differences can be attributed to different methodologies and data samples. With the
exception of Ait-Sahalia and Kimmel (2007) perhaps, all empirical results strongly suggest
that the square-root volatility dynamic is a mis-specification. In contrast, the stochastic
volatility model with γ = 1, a specification adopted in Hull and White (1987), is not rejected
by the likelihood ratio test, indicating γ = 1 seems to be a better constraint to use. This
result is also consistent with that of Christoffersen, Jacobs, and Mimouni (2010). Our results
are also consistent with Duan and Yeh (2010) which also employed VIX to study this class
of models.

The correlation between the price and volatility innovations, ρ, is found to be signifi-
cantly negative, a well-known empirical fact. The deduced volatility risk premium, δV , is
significantly negative for all cases. The negative volatility risk premium estimates reflect a
fact that the VIX term structure values have been higher than the corresponding realized
volatilities for most of the time as shown in Figure 2. The estimates corresponding to the
mean reversion parameter κ∗ under the risk-neutral probability measure are all positive and
highly significant in all cases, suggesting that the volatility process is mean-reverting under
both the physical and risk-neutral probability measures. This finding is important because
the earlier research findings reported in Pan (2002), Jones (2003), Chourdakis and Dotsis
(2009), and Duan and Yeh (2010) all imply an explosive risk-neutral volatility dynamic (i.e.,
a negative κ∗).5 This confirms our motivation of using the VIX term structure because the
option price information along the maturity dimension should be critical to ascertaning how
the risk-neutral volatility evolves over time. Based on the estimates for the general stochas-
tic volatility specification, we obtain the risk-neutral stationary volatility of 21.8% (using

5Pan (2002) also demonstrated that adding in-the-money short-dated options to the at-money-money
short-dated options already used in estimation can lower the volatility risk premium, and thus avoid the
situation of obtaining an explosive risk-neutral volatility dynamic (Table 3). However, the estimate lacks
reasonable precision to ascertain the presence of volatility risk premium.
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√
κ
κ∗θ), which is 70% higher than the stationary volatility of 12.8% (using

√
θ) under the

physical probability.

For option pricing, a positive κ∗ is quite important because an explosive risk-neutral
volatility process would severely overprice long-dated options. Figure 3 plots the (Black-
Scholes) implied volatility term structure series for two cases under different moneyness.6

“One VIX” indicates that the implied volatilities are inverted from the option prices of the
CEV volatility model which has been implemented by the particle filter-based MLE using
just one VIX series. The estimate for κ∗ remains negative.7 The implied volatilities for the
case of “Three VIXs” are inverted from the option prices computed using the parameter
estimates of the CEV volatility model in Table 2. When κ∗ is negative, the overpricing of
options becomes very serious as the options’ maturity increase. In contrast, the implied
volatility term structure tends to level off when κ∗ is a positive value.

The estimates for the measurement errors – σν1 , σν2 and σν3 – appear to be material and
significant in all cases. For example, the parameter estimate of σν1 is about 2.77% for the
CEV volatility model. With the one-month VIX at 20 points, this estimate can be translated
into a 1-point move in the one-month VIX if the measurement error is one standard deviation
in either direction. For the three-month VIX, the measurement error’s magnitude becomes
three times the one-month VIX. Increased measurement errors is hardly surprising given the
way that the VIX index is constructed. Longer-dated options are less frequently traded,
causing the VIX quality to deteriorate. Of course, one can also argue that this phenomenon
is caused by a mis-specified stochastic volatility model used in the empirical analysis.

Tables 3A, B, and C report the maximum likelihood estimation results for the stochastic
volatility models with jumps on the whole data sample. Different stochastic volatility models
and jump specifications are included. CEV, HW and SQRT correspond to the CEV volatility
model with an unconstrained parameter γ, the Hull and White (1987) model with γ = 1 and
a non-zero θ, and the square-root model such as Heston (1993), i.e., γ = 0.5. J0, J1, J2, and
J3 denote the unconstrained time-varying jumps, the constrained time-varying jumps with
λ1 = λ∗1, the constrained time-varying jumps with λ0 = λ∗0 = 0 (Bates (2000), Pan (2002),
Eraker, Johannes and Polson (2003), and Eraker (2004)), and the time-invariant jumps with
λ1 = λ∗1 = 0 (Bates(1996), and Duan and Yeh (2010)). The standard errors are in the
parentheses. Several observations are in order. The reported results clearly indicate the
presence of jumps. The estimates associated with jumps – λ0, λ1, µJ and σJ – are significant

6The underlying asset price is set to 1,000. The strike prices are 900, 1,000, and 1,100, respectively. Since
there is no closed-form option price formula for the model, we adopt the empirical martingale simulation
method of Duan and Simonato (1998) to compute the option prices. The number of simulation sample paths
is set at 10,000.

7The parameter estimates based on one VIX series are as follows: κ = 2.50, θ = 0.015, v = 2.10, ρ =
−0.75, δ0 − q = −0.02, γ = 0.98, and κ∗ = −8.14. The measurement error is approximately 2%.
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in most cases. By comparing the log-likelihood value of CEV in Table 2 and that of CEV-J0
in Table 3A, there is a substantial increase in the log-likelihood value after incorporating price
jumps. Although the likelihood ratio test statistic for the presence of jumps is not provided
in the table, the difference in the log-likelihood values clearly reveals that a conservative test
based on 6 degrees of freedom (six more parameters including nuisance ones) will be highly
significant. This conclusion continues to hold for the other three cases (CEV-J1, CEV-J2,
and CEV-J3) in Table 3A.

The jumps intensity appears to be time-varying. The estimates for λ1 are statistically
significant in all cases of Table 3A. By comparing the log-likelihood values of CEV-J0 and
that of CEV-J3, the CEV-J3 model with time-invariant jumps will be clearly rejected by
the likelihood ratio test. Moreover, the model that ignores the constant component in the
jump intensity may be mis-specified because CEV-J2 is clearly rejected by the likelihood
ratio test. It is worth noting that the jump intensity specifications adopted by Bate (1996,
2000), Andersen, Benzoni and Lund (2002), Pan (2002), Eraker, Johannes and Polson (2003),
Eraker (2004), and Duan and Yeh (2010) all appear to be at adds with the data. The CEV-
J1 model is also rejected by the likelihood ratio test, indicating the volatility-dependent
component on jump intensity under the physical probability measure λ1 differing from that
under the risk-neutral probability measure λ∗1. The above findings reman valid in Table 3B,
and C. The estimates for the constant component of the jump intensity, λ0, reported in Table
3A, B, and C imply that 12 to 19 price jumps per year.

The estimates associated with the measurement errors continue to be material and sig-
nificant in all cases. The correlations between the price and volatility innovations are sig-
nificantly negative irrespective of data periods and model specifications. In addition, the
parameter estimates for the CEV parameter γ range from 0.99 to 1.07 in Table 3A and are
highly significantly different from 0.5. The log-likelihood value for SQRT-J0 in Table 3C is
much smaller than that of CEV-J0 in Table 3A, suggesting that the square-root volatility
specification even allowing for jumps continues to be resoundingly rejected on the basis of
the likelihood ratio criterion. The square-root volatility specification used by, for example,
Pan (2002) and Eraker (2004) thus appears to be seriously at odds with the data.

In Table 3A, B and C, the volatility risk premium continues to be significantly negative
with the presence of jumps. The estimates of κ∗ remain positive in all cases, indicating a
mean-reverting volatility dynamic under the risk-neutral probability measure. As reported
in Table 3A, the estimates for the most general model specification imply that the risk-
neutral stationary volatility attributable to the diffusion component stands at 16.2% (using√

κ
κ∗θ), which is 60% higher than its counterpart under the physical probability with a value

of 10.1% (using
√
θ). We do expect the volatility associated with the diffusion component

to be lower than the estimate under the stochastic volatility model without jumps, because
part of the total volatility has been transferred to the jump component.
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The jump risk premium comprises two components: δJ0 and δJ1 that correspond to
the constant and volatility-dependent components in the jump intensity. The jump risk
premiums associated with the volatility-dependent component δJ1 are positively significant
for all cases in Table 3A, B, and C. δJ1 plays a far more important role in reconciling the
real data because there will be a drastic decline in the log-likelihood value when we impose
a constraint λ1 = λ∗1. The jump risk premiums associated with the constant component,
i.e., δJ0, are statistically significant for models with unconstrained γ (in Table 3A) and those
with γ = 1 (in Table 3B). In contrast, the jump risk premiums, δJ0, are not significantly
different from 0 under the square-root volatility specification (in Table 3C), suggesting that
the jump risk premium is sensitive to how the stochastic volatility process is specified.

Tables 4A and B respectively summarize the maximum likelihood estimation results for
the stochastic volatility models with jumps (the most general jump intensity setting) on
two sub-samples. For the first sub-sample (January 2, 1992 to December 29, 2000), Table
4A shows that the volatility risk premiums and the volatility-dependent jump risk premium
δJ1 are significantly different from 0. In contrast, the estimates for the constant component
in the jump risk premium, δJ0, are not significantly different from 0. For the second sub-
sample where the sample period is from January 2, 2001 to March 31, 2009, the volatility and
jump risk premiums, reported in Table 4B, are significantly different from 0 in most cases
and the estimates for κ∗ are significantly positive, suggesting a mean-reverting volatility
process under the risk-neutral probability measure. Interestingly, the jump and volatility
risk premiums δJ0, δJ1 and δV in Table 4A are obviously larger (in magnitude) than those in
Table 4B for all cases. This difference in the two sub-samples may be attributed to the 2008
financial crisis. As shown in Figure 2, the VIX value tends to be higher than the realized
volatility for most of the time in the first sample period, but this gap between VIX and
realized volatility experienced a large decline during the 2008 financial crisis in the second
sub-sample. This decline in magnitude is indeed influential on the estimation of volatility
and jump risk premiums.

5 Simulation analysis

To ascertain the performance of the SL-SIR filter-based estimation method developed in this
paper, we conduct a Monte Carlo simulation study. First, we simulate the time series of
asset prices {Sti ; t1, t2, · · · , tn} and the latent stochastic volatilities {Vti ; t1, t2, · · · , tn} using
the Euler discretization of the model in equations (2) and (3).8 For the simulation study,
we focus on the case with a constant jump intensity. We assume that one year has 252
trading days, and divide up one day into 10 subintervals to simulate the time series. A

8We have also tried the version by discretizing the logarithmic volatility instead of volatility. The con-
clusions remain the same.
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daily time series of prices and stochastic volatilities are extracted by sampling once every
10 data points. Given the simulated latent stochastic volatility time series, we compute the
VIX term structure values using the measurement equations in (10). The maturities for the
simulated VIX term structure are fixed at 21, 63, and 126 business days. Note that this
calculation does not require option valuations.

The parameter values used in the simulation are chosen to be consistent with the real
data. Without loss of generality, we set the interest rate, r, to zero and assume the underlying
asset does not pay any dividend, i.e., q = 0. The initial asset price is set to 1,000, and the
initial latent stochastic variance is fixed at 0.02 (or stationary standard deviation at 14.14%),
which is the stationary level implied by the parameter values used in the simulation. The
sample size of our simulated daily time series is 2,500.

For each simulated time series of price and VIX term structure, we conduct the maximum
likelihood estimation. This simulation/estimation exercise is repeated 200 times to analyze
the quality of this estimation procedure. We act as if we did not know the latent stochastic
volatility values in order to mimic the real-life estimation situation. The number of particles
used in the simulation study is 200, which is the same as in our empirical analysis. We
conduct an analysis to determine whether the asymptotic maximum likelihood analysis works
reasonably well for a sample size of 2,500 daily observations.

The results of this simulation study are presented in Table 5. In addition to means,
medians, and etc, we also report the coverage rates which are the percentage of the 200
parameter estimates contained in the α% confidence interval implied by the asymptotic
distribution. Most parameter estimates are quite close to their corresponding true values,
measured in terms of mean and median. The estimates for the parameters associated with
jumps, such as λ0, µJ , σJ , and with volatility, such as κ, θ, v, γ, ρ, κ∗, δV , and the measurement
errors, such as, σν1 , σν2 , σν3 , all have reasonably good accuracy. Their maximum likelihood
estimates seem to be unbiased. The coverage rates reveal that the asymptotic distribution is
a reasonably good approximation for a sample size of 2,500 daily observations, even though
some parameter estimates exhibit slightly biased coverage rates.

6 Conclusion

We have developed a particle filter-based MLE method for a class of stochastic volatility-
jump models on the data set that comprises the S&P 500 index return and the VIX term
structure. Our empirical analysis uses the daily data series from January 2, 1992 to March
31, 2009 which spans 17 years. We have reached the following conclusions: (1) the volatility
process under the risk-neutral measure is mean-reverting; (2) the jump intensity is time-
varying; (3) the jump and volatility risks are priced; (4) the measurement errors in VIXs
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are material; and (5) the square-root volatility process is mis-specified with or without price
jumps.

Our contributions are two-fold. First, we develop a estimation method that takes full
advantage of the VIX term structure information, and the model’s estimation no longer
needs to rely on valuing individual options. Second, applying the estimation method leads
to a distinctive conclusion that the risk-neutral volatility dynamic is stationary and evolves
around a level that is higher than the physical volatility level.

18



References

1. Ait-Sahalia, Y. and R. Kimmel, 2007, “Maximum Likelihood Estimation of Stochastic
Volatility Models,” Journal of Financial Economics, 83, 413-452.

2. Andersen, T., L. Benzoni and J. Lund, 2002, “Towards an Empirical Foundation for
Continuous-Time Equity Returns Models,” Journal of Finance, 57, 1239-1284.

3. Bakshi, G., C. Cao, and Z. Chen, 1997, “Empirical Performance of Alternative Option
Pricing Models,” Journal of Finance, 52, 2003-2049.

4. Bakshi, G., N. Ju, and H. Ou-Yang, 2006, “Estimation of Continuous-Time Models
with An Application to Equity Volatility Dynamics,” Journal of Financial Economics,
82, 227-249.

5. Bates, D., 1996, “Jumps and Stochastic Volatility: Exchange Rate Processes Implicit
in Deutsche Mark Options,” Review of Financial Studies, 9, 69-107.

6. Bates, D., 2000, “Post-’87 Crash Fears in S&P500 Future Options,” Journal of Econo-
metrics, 94, 181-238.

7. Britten-Jones, M. and A. Neuberger, 2000, “Option Prices, Implied Price Processes,
and Stochastic Volatility,” Journal of Finance, 55, 839-866.

8. Broadie, M., M. Chernov, and M. Johannes, 2007, “Model Specification and Risk
Premia: Evidence From Future Options,” Journal of Finance, 62, 1453-1490.

9. Carr, P. and D. Madan, 2001, “Optimal Positioning in Derivative Securities,”Quantitative
Finance, 1, 19-37.

10. CBOE white paper on VIX, CBOE website.

11. Chernov, M. and E. Ghysel, 2000, “A Study Towards A Unified Approach to the
Joint Estimation of Objective and Risk-Neutral Measures for the Purpose of Options
Valuation,” Journal of Financial Economics, 56, 407-458.

12. Chourdakis, K., and G. Dotsis, 2009, “Maximum Likelihood Estimation and Dynamic
Asset Allocation with Non-Affine Volatility Processes,” Working Paper, University of
Essex.

13. Christoffersen, P., S. Heston and K. Jacobs, 2006, “Option Valuation with Conditional
Skewness,” Journal of Econometrics, 131, 253-284.

19



14. Christoffersen, P., K., Jacobs and K., Mimouni, 2010, “Volatility Dynamics for the S&P
500: Evidence from Realized Volatility, Daily Returns, and Option Prices,” Review of
Financial Studies, forthcoming.

15. Christoffersen, P., K. Jacobs, C. Ornthanalal and Y. Wang, 2008, “Option Valuation
with Long-Run and Short-Run Volatility Components,” Journal of Financial Eco-
nomics, 90, 272-297.

16. Conley, T., L. Hansen, E. Luttmer and J. Scheinkman, 1997, “Short-term Interest
Rates as Subordinated Diffusions,” Review of Financial Studies, 10, 525-577.

17. Demeterfi, K., E. Derman, M. Kamal and J. Zhou, 1999,“More Than You Ever Wanted
to Know about Volatility Swaps,” Goldman Sachs Quantitative Strategies Research
Notes.

18. Dotsis, G., D. Psychoyios and G. Skiadopoulos, 2007, “An Empirical Comparison
of Continuous-Time Models of Implied Volatility Indices,” Journal of Banking and
Finance, 31, 3584-3603.

19. Duan, J., 1994, “Maximum Likelihood Estimation Using Price Data of the Derivative
Contract,” Mathematical Finance, 4, 155-167.

20. Duan, J. and A. Fulop, 2009, “Estimating the Structure Credit Risk Model When
Equity Prices Are Contaminated by Trading Noises,” Journal of Econometrics, 150,
288-296.

21. Duan, J. and C. Yeh, 2010, “Jump and Volatility Risk Premiums Implied by VIX,”
Journal of Economic Dynamics and Control, 34, 2232-2244.

22. Duffie, D., J. Pan and K. Singleton, 2000, “Transform Analysis and Asset Pricing for
Affine Jump-Diffusions,” Econometrica, 68, 1343-1376.

23. Eraker, B., 2004, “Do Equity Prices and Volatility Jump? Reconciling Evidence from
Spot and Option Prices,” Journal of Finance, 59, 1367-1403.

24. Eraker, B., M. Johannes and N. Polson, 2003, “The Impact of Jumps in Equity Index
Volatility and Returns,” Journal of Finance, 58, 1269-1300.

25. Fama, E., 1965, ”The Behavior of Stock-Market Prices,” Journal of Business, 38, 34-
105.

26. Hsieh, K. and P. Ritchken, 2005, “An Empirical Comparison of GARCH Models,”
Review of Derivatives Research, 8, 129-150.

20



27. Ishida, I., M. McAleer and K., Oya, 2011, “Estimating the Leverage Parameter of
Continuous-Time Stochastic Volatility Models Using High Frequency S&P 500 and
VIX,” Working Paper, Kyoto Institute of Economic Research, Kyoto University.

28. Heston, S., 1993, “A Closed Form Solution for Options with Stochastic Volatility with
Applications to Bond and Currency Options,” Review of Financial Studies, 6, 327-389.

29. Hull, J. and A., White, 1987, “The Pricing of Options on Assets with Stochastic
Volatilities,” Journal of Finance, 42, 281-300.

30. Jiang, G. and Y., Tian, 2005, “The Model-Free Implied Volatility and its Information
Content,” Review of Financial Studies, 18, 1305-1342.

31. Jiang, G. and Y., Tian, 2007. Extracting Model-Free Volatility from Option Prices:An
Examination of the VIX Index. Journal of Derivatives 14, 1-26.

32. Jones, C., 2003, “The Dynamics of the Stochastic Volatility: Evidence from Underlying
and Options Markets,” Journal of Econometrics, 116, 181-224.

33. Mandelbrot, B., 1963, “The Variation of Certain Speculative Prices,” Journal of Busi-
ness, 36, 394-419.

34. Pan, J., 2002, “The Jump-Risk Premia Implicit in Options: Evidence From an Inte-
grated Time-Series Study,” Journal of Financial Economics, 63, 3-50.

35. Stentoft, L., 2005, “Pricing American Options when the Underlying Asset Follows
GARCH Processes, Journal of Empirical Finance, 12, 576-611.

36. Todorov, V., 2009, “Variance Risk Premium Dynamics: The Role of Jumps,” Review
of Financial Studies, 63, 345-383.

37. Todorov, V. and G.. Tauchen, 2010, “Volatility Jumps,” Journal of Business and
Economic Statistics, forthcoming.

21



A The derivation of the components for the SL-SIR

Scheme

Given the normality assumption for ν1,i+1 and applying the standard change-of-variables
technique in statistics, the density for the localized sampler based on inversion can be spec-
ified as
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where (B(τ1; Θ)e2σν1ν1,i+1)/(σν1VIXti+1
(τ1)) is the Jacobian term.

Simulating according to the localized sampler as in equation (??) gives rise to the im-
portance weight:
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ti+1
) =

f(ν
(m)
i+1 )

σνkVIXti+1
(τk)

.

Note that f(lnSti+1
, V

(m)
ti+1
|V (m)
ti , Sti) is a Poisson mixture of the bivariate normal densities in

the following form:

∞∑
j=0

e−(λ0+λ1V
(m)
ti

)hi+1 [(λ0 + λ1V
(m)
ti )hi+1]

j

j!
g
(
wti+1

(j,Θ); 0,Ωti+1
(j,Θ)

)
where

wti+1
(j,Θ)

=

 ln
(
Sti+1

Sti

)
−
(
r − q + δ0 − φ0 + (δ1 − φ1 − 1

2
)V

(m)
ti

)
hi+1 − (j − (λ0 + λ1V

(m)
ti )hi+1)µJ

V
(m)
ti+1
− V (m)

ti − κ
(
θ − V (m)

ti

)
hi+1


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φ0 = λ0(e
µJ+σ

2
J/2−1−µJ), φ1 = λ1(e

µJ+σ
2
J/2−1−µJ), hi+1 = ti+1−ti, and g(·; 0,Ωti+1

(j,Θ))
is a bivariate normal density function with mean 0 and variance-covariance matrix:

Ωti+1
(j,Θ) =

[
V

(m)
ti hi+1 + jσ2

J ρvV
(m)
ti

0.5+γ
hi+1

ρvV
(m)
ti

0.5+γ
hi+1 v2V

(m)
ti

2γ
hi+1

]
.
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Table 1: Summary statistics

Mean Standard deviation Skewness Kurtosis Maximum Minimum

January 2, 1992 – March 31, 2009

S&P 500 Index 0.00015 0.0119 -0.2023 9.9013 0.1096 -0.0947

1-month VIX 18.9778 8.0968 2.4391 13.3104 80.8869 9.2300

3-month VIX 19.4757 7.1417 2.0456 10.6048 70.5434 9.7841

6-month VIX 19.8810 6.4526 1.7143 8.4320 62.4757 11.6913

Note: the VIX term structure series is interpolated to fix the maturity at 1, 3, and 6 months.
The squared VIXs of the term structure with expiration dates that bracket 21, 63, and 126
business days are used in interpolation.
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Table 2: Maximum likelihood estimation results for the
stochastic volatility models using the S&P 500 index returns

and 1-, 3-, and 6-month VIX term structure series
(Daily from January 2, 1992 to March 31, 2009)

CEV HW SQRT
Parameters under the physical measure
κ 2.4853 2.4917 5.4933

(0.6648) (0.6510) (0.3601)
θ 0.0165 0.0165 0.0176

(0.0044) (0.0043) (0.0045)
v 2.0300 2.1012 0.3782

(0.0396) (0.0141) (0.0025)
ρ -0.8487 -0.8539 -0.6361

(0.0035) (0.0041) (0.0073)
γ 0.9870 1 0.5

(0.0041) (-) (-)
δ0 − q 0.0102 0.0031 0.0038

(0.0423) (0.0406) (0.0493)
δ1 0.0354 -0.0252 -0.0465

(1.1472) (1.1253) (1.6236)
Parameter under the risk-neutral measure
κ∗ 0.8620 0.8611 0.8577

(0.0205) (0.0185) (0.0188)
Parameters for the measurement errors
σν1 0.0277 0.0282 0.0374

(0.0004) (0.0006) (0.0002)
σν2 0.0681 0.0674 0.0613

(0.0005) (0.0005) (0.0004)
σν3 0.0821 0.0807 0.0742

(0.0009) (0.0009) (0.0008)
Parameter for the volatility risk premium (computed)
δV -1.6232 -1.6305 -4.6355

(0.7997) (0.7659) (1.2858)
Log-Like 66200.5160 66199.3986 65056.4516
LR - 2.2348 2288.1288
P-value - (0.1349) (< 0.01)

Note: CEV denotes the stochastic volatility model with an unconstrained CEV
parameter γ; HW denotes the stochastic volatility model with γ = 1; SQRT
denotes the stochastic volatility model with γ = 0.5. The standard errors are
inside the parentheses. The volatility risk premium δV is computed as κ∗ − κ
and its standard error follows from the standard calculation. LR denotes the
likelihood ratio test statistic with its corresponding p value.
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Table 3A: Maximum likelihood estimation results for the

stochastic volatility/jump models using the S&P 500 index returns

and 1-, 3-, and 6-month VIX term structure series

(Daily from January 2, 1992 to March 31, 2009)

CEV-J0 CEV-J1 CEV-J2 CEV-J3

Parameters under the physical measure

κ 2.5069 2.4849 2.5223 2.4817

(0.5159) (0.7171) (0.5030) (0.5694)

θ 0.0103 0.0154 0.0095 0.0158

(0.0020) (0.0044) (0.0018) (0.0036)

λ0 15.5562 13.5966 0 15.6644

(5.4293) (3.8782) (-) (5.1647)

λ1 980.7650 424.9890 1169.7240 0

(456.7107) (218.2237) (270.0343) (-)

µJ(%) 0.3081 0.4488 0.7448 0.8926

(0.0904) (0.1310) (0.1134) (0.1667)

σJ(%) 0.8275 0.9735 0.7301 0.4168

(0.0726) (0.0764) (0.0489) (0.0852)

v 1.9709 1.9533 2.4648 2.0098

(0.0588) (0.0441) (0.0647) (0.0506)

ρ -0.8920 -0.9106 -0.8753 -0.8960

(0.0085) (0.0058) (0.0067) (0.0047)

γ 1.0238 0.9978 1.0734 1.0192

(0.0105) (0.0070) (0.0053) (0.0098)

δ0 − q 0.0829 0.0378 0.1398 0.2433

(0.0342) (0.0357) (0.0303) (0.0453)

δ1 2.8446 3.2741 -1.6000 0.1048

(1.3358) (1.0857) (1.3748) (0.9222)

26



CEV-J0 CEV-J1 CEV-J2 CEV-J3

Parameters under the risk-neutral measure

κ∗ 0.9819 0.9911 0.9484 0.8324

(0.0246) (0.0256) (0.0245) (0.0185)

φ∗0(%) -0.0327 0.1376 0 0.0508

(0.0157) (0.0085) (-) (0.0132)

φ∗1 0.3493 φ1 0.3751 0

(0.0253) (-) (0.0173) (-)

Parameters for the measurement errors

σν1 0.0255 0.0227 0.0233 0.0444

(0.0005) (0.0005) (0.0004) (0.0005)

σν2 0.0740 0.0873 0.0810 0.0706

(0.0006) (0.0009) (0.0007) (0.0006)

σν3 0.0900 0.0898 0.0905 0.0767

(0.0011) (0.0010) (0.0010) (0.0006)

Parameters for the volatility/jump risk premiums (computed)

δV -1.5250 -1.4938 -1.5738 -1.6493

(0.5138) (0.7139) (0.5017) (0.5671)

δJ0(%) -0.0935 0.0592 0 0.0568

(0.0291) (0.0297) (-) (0.0041)

δJ1 0.3109 0 0.3111 0

(0.0406) (-) (0.0350) (-)

Log-Like 66512.6938 66480.1121 66474.2295 66458.13306
Note: The reported estimates for µJ , σJ , φ

∗
0 and δJ0 have been multiplied by 100. CEV-J0 de-

notes the stochastic volatility model with unconstrained time-varying jumps and CEV parameter
γ; CEV-J1 denotes the stochastic volatility model with constrained time-varying jumps, λ1 = λ∗1,
and an unconstrained CEV parameter γ; CEV-J2 denotes the stochastic volatility model with
constrained time-varying jumps, λ0 = λ∗0 = 0, and an unconstrained CEV parameter γ; CEV-J3
denotes the stochastic volatility model with time-invariant jumps, λ1 = λ∗1 = 0, and an uncon-

strained CEV parameter γ. δV , δJ0 and δJ1 are computed by κ∗−κ, φ∗0−λ0(eµJ+σ
2
J/2−1−µJ),

and φ∗1−λ1(eµJ+σ
2
J/2− 1−µJ), respectively, and their standard errors follow from the standard

calculation.
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Table 3B: Maximum likelihood estimation results for the

stochastic volatility/jump models using the S&P 500 index returns

and 1-, 3-, and 6-month VIX term structure series

(Daily from January 2, 1992 to March 31, 2009)

HW-J0 HW-J1 HW-J2 HW-J3

Parameters under the physical measure

κ 2.4840 2.5101 2.5170 2.4933

(0.5354) (0.5880) (0.6656) (0.7327)

θ 0.0108 0.0141 0.0110 0.0160

(0.0023) (0.0033) (0.0028) (0.0047)

λ0 17.2256 12.0151 0 12.5005

(5.1443) (4.9847) (-) (4.0070)

λ1 940.0649 1467.6550 1391.8697 0

(465.7589) (514.9191) (318.5002) (-)

µJ(%) 0.4997 0.5126 0.2398 0.5057

(0.0996) (0.0924) (0.0892) (0.1160)

σJ(%) 0.7100 0.7640 0.9489 0.7103

(0.0544) (0.0690) (0.0774) (0.0602)

v 1.8816 2.0407 2.1368 2.4007

(0.0221) (0.0274) (0.0173) (0.0282)

ρ -0.8906 -0.9337 -0.9072 -0.9097

(0.0075) (0.0042) (0.0066) (0.0034)

γ 1 1 1 1

(-) (-) (-) (-)

δ0 − q 0.0548 0.2547 0.1386 0.0845

(0.0338) (0.0388) (0.0302) (0.0335)

δ1 0.7027 0.5272 -1.6005 2.8649

(1.3101) (1.1109) (1.3287) (0.8377)
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HW-J0 HW-J1 HW-J1 HW-J2

Parameters under the risk-neutral measure

κ∗ 0.9847 0.9306 0.9218 0.9431

(0.0229) (0.0211) (0.0186) (0.0199)

φ∗0(%) -0.0002 0.1086 0 0.1677

(0.0066) (0.0073) (-) (0.0045)

φ∗1 0.3127 φ1 0.2658 0

(0.0215) (-) (0.0172) (-)

Parameters for the measurement errors

σν1 0.0241 0.0486 0.0297 0.0337

(0.0002) (0.0005) (0.0004) (0.0006)

σν2 0.0746 0.0578 0.0661 0.0691

(0.0006) (0.0003) (0.0004) (0.0005)

σν3 0.0860 0.0798 0.0807 0.0771

(0.0009) (0.0010) (0.0007) (0.0008)

Parameters for the volatility/jump risk premiums (computed)

δV -1.4993 -1.5794 -1.5951 -1.5502

(0.5341) (0.5850) (0.6632) (0.7310)

δJ0(%) -0.0654 0.0576 0 0.1199

(0.0259) (0.0238) (-) (0.0237)

δJ1 0.2771 0 0.1990 0

(0.0374) (-) (0.0304) (-)

Log-Like 66496.8861 66470.9323 66463.6481 66452.6934
Note: The reported estimates for µJ , σJ , φ

∗
0 and δJ0 have been multiplied by 100. HW-J0

denotes the stochastic volatility model with unconstrained time-varying jumps and a constrained
parameter γ = 1; HW-J1 denotes the stochastic volatility model with constrained time-varying
jumps, λ1 = λ∗1, and γ = 1; HW-J2 denotes the stochastic volatility model with constrained
time-varying jumps, λ0 = λ∗0 = 0, and γ = 1; HW-J3 denotes the stochastic volatility model
with time-invariant jumps, λ1 = λ∗1 = 0, and γ = 1. δV , δJ0 and δJ1 are computed by κ∗ − κ,

φ∗0 − λ0(eµJ+σ
2
J/2 − 1 − µJ), and φ∗1 − λ1(eµJ+σ

2
J/2 − 1 − µJ), respectively, and their standard

errors follow from the standard calculation.
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Table 3C: Maximum likelihood estimation results for the

stochastic volatility/jump models using the S&P 500 index returns

and 1-, 3-, and 6-month VIX term structure series

(Daily from January 2, 1992 to March 31, 2009)

SQRT-J0 SQRT-J1 SQRT-J2 SQRT-J3

Parameters under the physical measure

κ 2.4914 2.4638 2.4977 2.7739

(0.3911) (0.5529) (0.4063) (0.3936)

θ 0.0108 0.0156 0.0103 0.0133

(0.0017) (0.0035) (0.0016) (0.0019)

λ0 18.4961 14.9655 0 18.9420

(8.2447) (7.4129) (-) (8.3106)

λ1 523.0339 824.3000 1062.2623 0

(478.2618) (331.8241) (175.0244) (-)

µJ(%) 0.5085 0.4970 0.6287 0.4983

(0.1862) (0.0721) (0.1091) (0.1807)

σJ(%) 0.6668 0.7002 0.3758 0.6933

(0.1081) (0.0551) (0.0680) (0.1017)

v 0.2814 0.4288 0.3016 0.3908

(0.0047) (0.0090) (0.0052) (0.0032)

ρ -0.7699 -0.8509 -0.8547 -0.6642

(0.0000) (0.0065) (0.0078) (0.0098)

γ 0.5 0.5 0.5 0.5

(-) (-) (-) (-)

δ0 − q 0.1405 0.0386 0.1400 0.1402

(0.0389) (0.0335) (0.0252) (0.0517)

δ1 -1.5900 5.1935 -1.5997 -1.5999

(1.8737) (1.6912) (2.0323) (1.8860)
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SQRT-J0 SQRT-J1 SQRT-J2 SQRT-J3

Parameters under the risk-neutral measure

κ∗ 1.0618 0.8941 0.9606 0.8110

(0.0215) (0.0265) (0.0260) (0.0139)

φ∗0(%) 0.0305 0.0405 0 0.0375

(0.0267) (0.0247) (-) (0.0216)

φ∗1 0.3111 φ1 0.3109 0

(0.0234) (-) (0.0175) (-)

Parameters for the measurement errors

σν1 0.0624 0.0360 0.0409 0.0687

(0.0004) (0.0002) (0.0003) (0.0002)

σν2 0.0749 0.0775 0.0636 0.0716

(0.0008) (0.0007) (0.0004) (0.0001)

σν3 0.0783 0.0885 0.0958 0.0856

(0.0011) (0.0012) (0.0014) (0.0014)

Parameters for the volatility/jump risk premiums (computed)

δV -1.4295 -1.5697 -1.5370 -1.9629

(0.3900) (0.5500) (0.4030) (0.3924)

δJ0(%) -0.0347 -0.0148 0 -0.0318

(0.0637) (0.0484) (-) (0.0773)

δJ1 0.2927 0 0.1887 0

(0.0399) (-) (0.0359) (-)

Log-Like 66220.0082 66124.3129 65398.5609 65373.9742
Note: The reported estimates for µJ , σJ , φ

∗
0 and δJ0 have been multiplied by 100. SQRT-

J0 denotes the stochastic volatility model with unconstrained time-varying jumps and a
constrained parameter γ = 0.5; SQRT-J1 denotes the stochastic volatility model with
constrained time-varying jumps, λ1 = λ∗1, and γ = 0.5; SQRT-J2 denotes the stochastic
volatility model with constrained time-varying jumps, λ0 = λ∗0 = 0, and γ = 0.5; SQRT-
J3 denotes the stochastic volatility model with time-invariant jumps, λ1 = λ∗1 = 0, and

γ = 0.5. δV , δJ0 and δJ1 are computed by κ∗ − κ, φ∗0 − λ0(e
µJ+σ

2
J/2 − 1 − µJ), and

φ∗1−λ1(eµJ+σ
2
J/2−1−µJ), respectively, and their standard errors follow from the standard

calculation.
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Table 4A: Maximum likelihood estimation results for the

stochastic volatility/jump models using the S&P 500 index returns

and 1-, 3-, and 6-month VIX term structure series

(Daily from January 2, 1992 to December 29, 2000)

CEV-J0 HW-J0 SQRT-J0

Parameters under the physical measure

κ 2.5193 2.4856 2.4944

(0.7059) (0.7287) (1.6354)

θ 0.0067 0.0072 0.0297

(0.0018) (0.0021) (0.0195)

λ0 15.2417 16.7874 15.1177

(6.6371) (6.4290) (15.6711)

λ1 685.6957 633.1380 1347.2498

(695.0929) (591.6492) (604.2099)

µJ(%) 0.1952 0.5120 0.5164

(0.1232) (0.1430) (0.0793)

σJ(%) 0.9519 0.7200 0.7200

(0.1333) (0.0822) (0.0556)

v 2.0278 1.8511 0.6659

(0.1782) (0.0300) (0.0487)

ρ -0.8586 -0.8535 -0.9507

(0.0120) (0.0116) (0.0067)

γ 1.0333 1 0.5

(0.0272) (-) (-)

δ0 − q 0.0173 0.1585 0.0186

(0.0475) (0.0458) (0.0674)

δ1 6.2096 -0.9807 4.7258

(2.9538) (2.9728) (3.3196)
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CEV-J0 HW-J0 SQRT-J0

Parameters under the risk-neutral measure

κ∗ 0.7562 0.8051 0.9825

(0.0402) (0.0435) (0.0618)

φ∗0(%) 0.0438 0.1134 -0.0128

(0.0324) (0.0097) (0.0747)

φ∗1 0.4526 0.3907 -0.2096

(0.0403) (0.0289) (0.0240)

Parameters for the measurement errors

σν1 0.0244 0.0231 0.0218

(0.0007) (0.0006) (0.0005

σν2 0.0925 0.0805 0.0993

(0.0012) (0.0008) (0.0015

σν3 0.0797 0.0869 0.0981

(0.0012) (0.0016) 0.0022)

Parameters for the volatility/jump risk premiums (computed)

δV -1.7630 -1.6805 -1.5118

(0.7026) (0.7260) (0.7324)

δJ0(%) -0.0282 0.0476 -0.0724

(0.0503) (0.0338) (0.1225)

δJ1 0.4202 0.3659 -0.2627

(0.0628) (0.0447) (0.0451)

Log-Like 35582.1679 35523.8623 34441.4405
Note: The reported estimates for µJ , σJ , φ

∗ and δJ0 have been multiplied by 100. CEV-J0
denotes the stochastic volatility model with unconstrained time-varying jumps and CEV
parameter γ; HW-J0 denotes the stochastic volatility model with unconstrained time-
varying jumps and a fixed parameter γ = 1; SQRT-J0 denotes the stochastic volatility
model with unconstrained time-varying jumps and a fixed parameter γ = 0.5. δV , δJ0 and

δJ1 are computed by κ∗ − κ, φ∗0 − λ0(eµJ+σ
2
J/2 − 1− µJ), and φ∗1 − λ1(eµJ+σ

2
J/2 − 1− µJ),

respectively, and their standard errors follow from the standard calculation.
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Table 4B: Maximum likelihood estimation results for the

stochastic volatility/jump models using the S&P 500 index returns

and 1-, 3-, and 6-month VIX term structure series

(Daily from January 2, 2001 to March 31, 2009)

CEV-J0 HW-J0 SQRT-J0

Parameters under the physical measure

κ 2.4920 2.4835 2.4986

(0.8183) (0.7127) (0.7513)

θ 0.0160 0.0162 0.0302

(0.0051) (0.0046) (0.0092)

λ0 13.7034 15.6321 15.2289

(8.4074) (8.9488) (23.6302)

λ1 477.3582 893.0140 1030.1701

(420.8216) (648.3489) (513.6394)

µJ(%) 0.6239 0.4634 0.5050

(0.1541) (0.1355) (0.2139)

σJ(%) 0.6230 0.6674 0.7091

(0.0650) (0.0748) (0.1523)

v 2.1736 1.8150 0.4980

(0.0740) (0.0309) (0.0000)

ρ -0.8966 -0.9311 -0.8449

(0.0109) (0.0097) (0.0060)

γ 1.0436 1 0.5

(0.0133) (-) (-)

δ0 − q 0.0261 0.0813 -0.0034

(0.0610) (0.0525) (0.0760)

δ1 -0.0231 0.0347 -0.1190

(1.3504) (1.2475) (2.0416)
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CEV-J0 HW-J0 SQRT-J0

Parameters under the risk-neutral measure

κ∗ 0.9935 0.9605 0.9929

(0.0427) (0.0301) (0.0436)

φ∗0(%) -0.1518 -0.1643 -0.0028

(0.0250) (0.0133) (0.0327)

φ∗1 0.1627 0.1879 -0.1090

(0.0324) (0.0301) (0.0083)

Parameters for the measurement errors

σν1 0.0216 0.0340 0.0427

(0.0005) (0.0008) (0.0003)

σν2 0.0867 0.0485 0.1009

(0.0033) (0.0011) (0.0000)

σν3 0.0885 0.0788 0.1009

(0.0026) (0.0021) (0.0000)

Parameters for the volatility/jump risk premiums

δV -1.4985 -1.5230 -1.5056

(0.8140) (0.7123) (0.7515)

δJ0(%) -0.2053 -0.2161 -0.0608

(0.0507) (0.0375) (0.1194)

δJ1 0.1441 0.1583 -0.1482

(0.0448) (0.0512) (0.0243)

Log-Like 31416.8744 31005.5565 30615.2718
Note: The reported estimates for µJ , σJ , φ

∗ and δJ0 have been multiplied by 100. CEV-J0
denotes the stochastic volatility model with unconstrained time-varying jumps and CEV
parameter γ; HW-J0 denotes the stochastic volatility model with unconstrained time-
varying jumps and a fixed parameter γ = 1; SQRT-J0 denotes the stochastic volatility
model with unconstrained time-varying jumps and a fixed parameter γ = 0.5. δV , δJ0 and

δJ1 are computed by κ∗ − κ, φ∗0 − λ0(eµJ+σ
2
J/2 − 1− µJ), and φ∗1 − λ1(eµJ+σ

2
J/2 − 1− µJ),

respectively, and their standard errors follow from the standard calculation.
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Figure 1: The S&P 500 index return and the VIX term structure
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Figure 2: The VIX term structure, the corresponding realized volatility, and the gap between
VIX and realized volatility
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Figure 3: The Black-Scholes implied volatility term structure curves under positive and
negative κ∗
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